IMPROVED FEEDBACK MECHANISMS OF HYDRAULICS SANDBOX SIMULATOR

Dr. Karen Johnson and Martin Hebel Aviation Technologies – Southern Illinois University

Hydraulics Sandbox

Developed by the presenters

- Allows simulating the build of a hydraulics system with standard components
- The software checks for valid and invalid connections
- Hopefully will be beneficial in students' understanding

Quick Use Guide

- Download from: www.selmaware.com/sandbox PC & Linux installers, other options for MacOS
- Drag components to build area
- Click a port to connect hose Right-click to cancel a hose
- Right-Click a port to delete a hose
- A Component must be disconnected to drag
- Drag components to trash to delete
- Turn on switch to check connection validity Counter will update each time turned on

Implementation

- Hydraulic Systems and Landing Gear Course (16 weeks)
 - Section 1 (n=17) concurrent sandbox
 - Section 2 (n=17) terminal sandbox
- Both sections given the same list of components each week to create their system
 - Submitted screenshots of final build with timestamps and attempts
- Unit tests (4 plus final exam)
 - Drawing (on paper) a schematic with given list of components
 - MCQs related to component interactions within a system
 - General and system specific

Findings

- No statistically significant results
- Only (very) minor differences in actual numbers of right/wrong on assessments
 - Terminal group did slightly better on both schematics and MCQ
- Overall more attempts made (weekly) by the concurrent group
 - Started over rather than using the trash bin?
- Overall more time logged (weekly) by the concurrent group
 - More time going back to fix errors along the way?
- Chalk this up to a pilot study of the software

THEORY OF CODE OPERATION

Hydraulics Sandbox Code

Installers available for Windows and Linux.
www.selmaware.com/sandbox

The installers add an updated that can be used to check if a new version is available.

- A zip of the code is available under MacOS distribution can be used on all platforms:
- Developed using the Processing 3 Java environment, which is free.
- Directions on the page explain how to make your own .exe build open and export, done. Modify if you desire! Please do not publicly distribute.
- This is required for local MacOS distribution on flash drives as the exe did not pass Apple's Notarization checks for download use.

Component Objects

There is a single component object.

- All the various components are created at load with a finite number of each.
- At creation of each, they are indexed in a certain range, such as the variable displacement pumps are 10 14. The also are assigned an image and component type, along with size information.

for(i=10; i<15;i++) // create 5 variable pumps, #3
component[i] = new Components(350,30,100,i,3, "Variable Displacement Pump.png");</pre>

Port Objects

- Each component can have up to 4 connection ports.
- When placed in the build area, ports are added based on the Component ID.
- Each port number is indexed based on the index of the component:

component index x 4 + 0component index x 4 + 1component index x 4 + 2component index x 4 + 3

- For the variable displacement pump (index 10), the ports will be 40, 41, 42 and 43 (if all 4 had been used).
- This allows quick identification of components from the port index number.

Hose Objects

- When a hose is placed, the beginning and end port index numbers are assigned to it.
- This allows easy identification of the component indexes the hose is connected to (40/4 = component index 10) and which ports by resolving 40, 41, 42, 43 to 0, 1, 2, 3.
- Having the component index, that component object can be polled to determine its type.

Connection Verification Rules

- Being able to resolve the port number and the component type, the rules check for 4 rule sets by checking each hose in sequence:
 - Is there a valid connection?
 - Does it connect to itself some how?
 - Is there an invalid connection via tees?
 - Is there a valve/actuator agreement?

```
for (int i=0;(i < numHoses); i++) // go through each hose used
{
    connCount = 0;
    if (hose[i].visible()) { // if visible
        finalResult = checkHoses(i); // check for proper connections
        if (finalResult) finalResult = test2Self(i); // go ensure it doesn't connect to itself
        if (finalResult) finalResult = checkBadTeeConnections(i); // go run through not-allowed connection list
        if (finalResult) finalResult = valves2Actuators(i); // check valve/actuator agreement for both hoses
        setHose(i, finalResult);
    }
}</pre>
```

Valid Connection Rules

A valid connection rule checks component type and port to another component type and port for each hose.

if (testHose(i,res,1,constDispPump,0))
if (testHose(i,res,1,varDispPump,1))
if (testHose(i,pressReg,2,closedCenterValve,0))
if (testHose(i,pressReg,2,closedCenterValve,1))

return true; return true; return true; return true;

Invalid Connection Rules

- While a hose may check ok, a tee from it may form an invalid connection.
- Some invalid connections are checked to provide a feedback message to the user when they place the pointer over the connection.
- The port is not checked in all cases, just the component types.

return false;

Example Feedback

This connection would not supply pressure to the actuator

Tee Checks

- While a single hose connection may be good, hoses from the tees, and subsequent tees and their hoses need to checked for validity.
- This is done with recursive calls to trace a path through multiple tees.

Return Lines

Hoses are checked to see if they connect to the reservoir return and displayed in dark green.

if (result){

if (testHose(i,res,3)) // in return line, make dark green
hose[i].finish(color(0,128,0));

else

```
hose[i].finish(color(0,255,0)); // good, normal green
```

} else

]

```
hose[i].finish(color(253,0,0));
```


Enabling Checking

When the toggle switch is off, hoses are not checked and will remain blue.

When turned on, hoses are checked, and the counter is increased to allow verifying during a quiz situation.

While on, any subsequent hoses placed will be checked.

Summary

- Final use notes
 - There is NO saving/opening builds.
 - Do NOT press the escape key It will close.
 - To start a new build, close and re-open or it may become sluggish and the parts bin may empty.
- A Windows and Linux installer is available. Mac versions need to be 'Exported' using the source code for local manual distribution.
- Bugs may still exist depending on what the student does but is effective at helping them understand a hydraulics system build we hope.