
IMPROVED FEEDBACK
MECHANISMS OF HYDRAULICS

SANDBOX SIMULATOR
Dr. Karen Johnson and Martin Hebel

Aviation Technologies – Southern Illinois University

Hydraulics Sandbox

■ Developed by the presenters

■ Allows simulating the build of a hydraulics system with

standard components

■ The software checks for valid and invalid connections

■ Hopefully will be beneficial in students’ understanding

Quick Use Guide
■ Download from:

www.selmaware.com/sandbox
PC & Linux installers, other options for MacOS

■ Drag components to build area

■ Click a port to connect hose - Right-click to cancel a hose

■ Right-Click a port to delete a hose

■ A Component must be disconnected to drag

■ Drag components to trash to delete

■ Turn on switch to check connection validity - Counter will update each time
turned on

Implementation
■ Hydraulic Systems and Landing Gear Course (16 weeks)

– Section 1 (n=17) - concurrent sandbox

– Section 2 (n=17) - terminal sandbox

■ Both sections given the same list of components each week to create
their system

– Submitted screenshots of final build with timestamps and
attempts

■ Unit tests (4 plus final exam)

– Drawing (on paper) a schematic with given list of components

– MCQs related to component interactions within a system

■ General and system specific

Findings
■ No statistically significant results

■ Only (very) minor differences in actual numbers of right/wrong on

assessments

– Terminal group did slightly better on both schematics and MCQ

■ Overall more attempts made (weekly) by the concurrent group

– Started over rather than using the trash bin?

■ Overall more time logged (weekly) by the concurrent group

– More time going back to fix errors along the way?

■ Chalk this up to a pilot study of the software

THEORY OF CODE
OPERATION

Hydraulics Sandbox Code
■ Installers available for Windows and Linux.

www.selmaware.com/sandbox

The installers add an updated that can be used to check if a new version is
available.

■ A zip of the code is available under MacOS distribution – can be used on all
platforms:

■ Developed using the Processing 3 Java environment, which is free.

■ Directions on the page explain how to make your own .exe build – open and export,
done. Modify if you desire! Please do not publicly distribute.

■ This is required for local MacOS distribution on flash drives as the exe did not pass
Apple’s Notarization checks for download use.

Component Objects
■ There is a single component object.

■ All the various components are created at load with a finite

number of each.

■ At creation of each, they are indexed in a certain range, such as the

variable displacement pumps are 10 – 14. The also are assigned an

image and component type, along with size information.

for(i=10; i<15;i++) // create 5 variable pumps, #3

component[i] = new Components(350,30,100,i,3, "Variable Displacement Pump.png");

Port Objects

■ Each component can have up to 4 connection ports.

■ When placed in the build area, ports are added based on the
Component ID.

■ Each port number is indexed based on the index of the component:

component index x 4 + 0
component index x 4 + 1
component index x 4 + 2
component index x 4 + 3

■ For the variable displacement pump (index 10), the ports will be 40,
41, 42 and 43 (if all 4 had been used).

■ This allows quick identification of components from the port index
number.

Hose Objects
■ When a hose is placed, the beginning and end port index

numbers are assigned to it.

■ This allows easy identification of the component indexes the
hose is connected to (40/4 = component index 10) and
which ports by resolving 40, 41, 42, 43 to 0, 1, 2, 3.

■ Having the component index, that component object can be
polled to determine its type.

Connection Verification Rules
■ Being able to resolve the port number and the component type, the rules

check for 4 rule sets by checking each hose in sequence:

– Is there a valid connection?

– Does it connect to itself some how?

– Is there an invalid connection via tees?

– Is there a valve/actuator agreement?

for (int i=0;(i < numHoses); i++) // go through each hose used

{

connCount = 0;

if (hose[i].visible()) { // if visible

finalResult = checkHoses(i); // check for proper connections

if (finalResult) finalResult = test2Self(i); // go ensure it doesn't connect to itself

if (finalResult) finalResult = checkBadTeeConnections(i); // go run through not-allowed connection list

if (finalResult) finalResult = valves2Actuators(i); // check valve/actuator agreement for both hoses

setHose(i, finalResult);

}

}

Valid Connection Rules
■ A valid connection rule checks component type and port to

another component type and port for each hose.

if (testHose(i,res,1,constDispPump,0)) return true;

if (testHose(i,res,1,varDispPump,1)) return true;

if (testHose(i,pressReg,2,closedCenterValve,0)) return true;

if (testHose(i,pressReg,2,closedCenterValve,1)) return true;

Invalid Connection Rules
■ While a hose may check ok, a tee from it may form an invalid

connection.

■ Some invalid connections are checked to provide a feedback message

to the user when they place the pointer over the connection.

■ The port is not checked in all cases, just the component types.

if (testCompHose(i,res,actuator)) {

hoseMsg[i][0]="This connection would not supply pressure to the
actuator";

return false;

}

Example Feedback

Tee Checks

■ While a single hose connection may be good, hoses from

the tees, and subsequent tees and their hoses need to

checked for validity.

■ This is done with recursive calls to trace a path through

multiple tees.

Return Lines
■ Hoses are checked to see if they connect to the reservoir

return and displayed in dark green.

if (result){

if (testHose(i,res,3)) // in return line, make dark green

hose[i].finish(color(0,128,0));

else

hose[i].finish(color(0,255,0)); // good, normal green

}

else

hose[i].finish(color(253,0,0)); // bad, red

Enabling Checking

■ When the toggle switch is off, hoses

are not checked and will remain blue.

■ When turned on, hoses are checked,

and the counter is increased to allow

verifying during a quiz situation.

While on, any subsequent hoses

placed will be checked.

Summary
■ Final use notes

– There is NO saving/opening builds.

– Do NOT press the escape key - It will close.

– To start a new build, close and re-open or it may become
sluggish and the parts bin may empty.

■ A Windows and Linux installer is available. Mac versions need to
be ‘Exported’ using the source code for local manual
distribution.

■ Bugs may still exist depending on what the student does but is
effective at helping them understand a hydraulics system build
we hope.

